Read here pertinent facts about someone whose work is critical to a proper comprehension of scale.

Biography

Percy Williams Bridgman (1882–1961) was an American physicist who won the 1946 Nobel Prize in Physics for his work on the physics of high pressures. He also wrote extensively on the scientific method and on other aspects of the philosophy of science.
His writings on the philosophy of science advocated operationalism, and he coined the term operational definition.

Importance To Scalometry

Bridgman wrote explicitly about the differences of metrology at different scales. His theory of operational definitions, while criticized, is a mainstream work that is accepted by a scientific consensus.

Excerpts of Relevant Writings by Bridgman

Detailed Discussion Of The Concept Of Length By Bridgman

We may now gain further familiarity with the operational attitude toward a concept and some of its implications by examining from this point of view the concept of length. Our task is to find the operations by which we measure the length of any concrete physical object. We begin with objects of our commonest experience, such as a house or a house lot. What we do is sufficiently indicated by the following rough description. We start with a measuring rod, lay it on the object so that one of its ends coincides with one end of the object, mark on the object the position of the other end of the rod, then move the rod along in a straight line extension of its previous position until the first end coincides with the previous position of the second end, repeat this process as often as we can, and call the length the total number of times the rod was applied. This procedure, apparently so simple, is in practice exceedingly complicated, and doubtless a full description of all the precautions that must be taken would fill a large treatise. We must, for example, be sure that the temperature of the rod is the standard temperature at which its length is defined, or else we must make a correction for it; or we must correct for the gravitational distortion of the rod if we measure a vertical length; or we must be sure that the rod is not a magnet or is not subject to electrical forces. All these precautions would occur to every physicist. But we must also go further and specify all the details by which the rod is moved from one position to the next on the object‹its precise path through space and its velocity and acceleration in getting from one position to another. Practically of course, precautions such as these are not mentioned, but the justification is in our experience that variations of procedure of this kind are without effect on the final result. But we always have to recognise that all our experience is subject to error, and that at some time in the future we may have to specify more carefully the acceleration, for example, of the rod in moving from one position to another, if experimental accuracy should be so increased as to show a measurable effect. In principle the operations by which length is measured should be uniquely specified. If we have more than one set of operations, we have more than one concept, and strictly there should be a separate name to correspond to each different set of operations.

So much for the length of a stationary object, which is complicated enough. Now suppose we have to measure a moving street car. The simplest, and what we may call the "naive" procedure, is to board the car with our meter stick and repeat the operations we would apply to a stationary body. Notice that this procedure reduces to that already adopted in the limiting case when the velocity of the street car vanishes. But here there may be new questions of detail. How shall we jump on to the car with our stick in hand? Shall we run and jump on from behind, or shall we let it pick us up from in front? Or perhaps does now the material of which the stick is composed make a difference, although previously it did not? All these questions must be answered by experiment. We believe from present evidence that it makes no difference how we jump on to the car, or of what material the rod is made, and that the length of the car found in this way will be the same as if it were at rest. But the experiments are more difficult, and we are not so sure of our conclusions as before. Now there are very obvious limitations to the procedure just given. If the street car is going too fast, we can not board it directly, but must use devices, such as getting on from a moving automobile; and, more important still, there are limitations to the velocity that can be given to street cars or to meter sticks by any practical means in our control, so that the moving bodies which can be measured in this way are restricted to a low range of velocity. If we want to be able to measure the length of bodies moving with higher velocities such as we find existing in nature (stars or cathode particles), we must adopt another definition and other operations for measuring length, which also reduce to the operations already adopted in the static case. This is precisely what Einstein did. Since Einstein's operations were different from our operations above, his "length" does not mean the same as our "length." We must accordingly be prepared to find that the length of a moving body measured by the procedure of Einstein is not the same as that above; this of course is the fact, and the transformation formulas of relativity give the precise connection between the two lengths.

Einstein's procedure for measuring the length of bodies in motion was dictated not only by the consideration that it must be applicable to bodies with high velocities, but also by mathematical convenience, in that Einstein describes the world mathematically by a system of coördinate geometry, and the "length" of an object is connected simply with quantities in the analytic equations.

It is of interest to describe briefly Einstein's actual operations for measuring the length of a body in motion; it will show how operations which may be simple from a mathematical point of view may appear complicated from a physical viewpoint. The observer who is to measure the length of a moving object must first extend over his entire plane of reference (for simplicity the problem is considered two-dimensional) a system of time coördinates,i.e., at each point of his plane of reference there must be a clock, and all these clocks must be synchronised. At each clock an observer must be situated. Now to find the length of the moving object at a specified instant of time (it is a subject for later investigation to find whether its length is a function of time), the two observers who happen to coincide in position with the two ends of the object at the specified time on their clocks are required to find the distance between their two positions by the procedure for measuring the length of a stationary object, and this distance is by definition the length of the moving object in the given reference system. This procedure for measuring the length of a body in motion hence involves the idea of simultaneity, through the simultaneous position of the two ends of the rod, and we have seen that the operations by which simultaneity are determined are relative, changing when the motion of the system changes. We hence are prepared to find a change in the length of a body when the velocity of the measuring system changes, and this in fact is what happens. The precise numerical dependence is worked out by Einstein, and involves other considerations, in which we are not interested at present.

The two sorts of length, the naive one and that of Einstein, have certain features in common. In either case in the limit, as the velocity of the measuring system approaches zero, the operations approach those for measuring the length of a stationary object. This, of course, is a requirement in any good definition, imposed by considerations of convenience, and it is too obvious a matter to need elaboration. Another feature is that the operations equivalent to either concept both involve the motion of the system, so that we must recognise the possibility that the length of a moving object may be a function of its velocity. It is a matter of experiment, unpredictable until tried, that within the limits of present experimental error the naive length is not affected by motion, and Einstein's length is.

So far, we have extended the concept of length in only one way beyond the range of ordinary experience, namely to high velocities. The extension may obviously be made in other directions. Let us inquire what are the operations by which we measure the length of a very large object. In practice we probably first meet the desirability of a change of procedure in measuring large pieces of land. Here our procedure depends on measurements with a surveyor's theodolite. This involves extending over the surface of the land a system of coördinates, starting from a base line measured with a tape in the conventional way, sighting on distant points from the extremities of the line, and measuring the angles. Now in this extension we have made one very essential change: the angles between the lines connecting distant points are now angles between beams of light. We assume that a beam of light travels in a straight line. Furthermore, we assume in extending our system of triangulation over the surface of the earth that the geometry of light beams is Euclidean. We do the best we can to check the assumptions, but at most can never get more than a partial check. Thus Gauss checked whether the angles of a large terrestrial triangle add to two right angles and found agreement within experimental error. We now know from the experiments of Michelson that if his measurements had been accurate enough he would not have got a check, but would have had an excess or defect according to the direction in which the beam of light travelled around the triangle with respect to the rotation of the earth. But if the geometry of light beams is Euclidean, then not only must the angles of a triangle add to two right angles, but there are definite relations between the lengths of the sides and the angles, and to check these relations the sides should be measured by the old procedure with a meter stick. Such a check on a large scale has never been attempted, and is not feasible. It seems, then, that our checks on the Euclidean character of optical space are all of restricted character. We have apparently proved that up to a certain scale of magnitude optical space is Euclidean with respect to measures of angle, but this may not necessarily involve that space is also Euclidean with respect to measures of length, so that space need not be completely Euclidean. There is a further most important restriction in that our studies of non-Euclidean geometry have shown that the percentage excess of the angles of a non-Euclidean triangle over 180° may depend on the magnitude of the triangle, so that it may well be that we have not detected the non-Euclidean character of space simply because our measurements have not been on a large enough scale.

We thus see that the concept of length has undergone a very essential change of character even within the range of terrestrial measurements, in that we have substituted for what I may call the tactual concept an optical concept, complicated by an assumption about the nature of our geometry. From a very direct concept we have come to a very indirect concept with a most complicated set of operations. Strictly speaking, length when measured in this way by light beams should be called by another name, since the operations are different. The practical justification for retaining the same name is that within our present experimental limits a numerical difference between the results of the two sorts of operations has not been detected.

We are still worse off when we make the extension to solar and stellar distances. Here space is entirely optical in character, and we never have an opportunity of even partially comparing tactual with optical space. No direct measures of length have ever been made, nor can we even measure the three angles of a triangle and so check our assumption that the use of Euclidean geometry in extending the concept of space is justified. We never have under observation more than two angles of a triangle, as when we measure the distance of the moon by observation from the two ends of the earth's diameter. To extend to still greater distance our measures of length, we have to make still further assumptions, such as that inferences from the Newtonian laws of mechanics are valid. The accuracy of our inferences about lengths from such measurements is not high. Astronomy is usually regarded as a science of extraordinarily high accuracy, but its accuracy is very restricted in character, namely to the measurement of angles. It is probably safe to say that no astronomical distance, except perhaps that of the moon, is known with an accuracy greater than 0.19. When we push our estimates to distances beyond the confines of the solar system in which we are assisted by the laws of mechanics, we are reduced in the first place to measurements of parallax, which at best have a quite inferior accuracy, and which furthermore fail entirely outside a rather restricted range. For greater stellar distances we are driven to other and much rougher estimates, resting for instance on the extension to great distances of connections found within the range of parallax between brightness and spectral type of a star, or on such assumptions as that, because a group of stars looks as if it were all together in space and had a common origin, it actually is so. Thus at greater and greater distances not only does experimental accuracy become less, but the very nature of the operations by which length is to be determined becomes indefinite, so that the distances of the most remote stellar objects as estimated by different observers or by different methods may be very divergent. A particular consequence of the inaccuracy of the astronomical measures of great distances is that the question of whether large scale space is Euclidean or not is merely academic.
We thus see that in the extension from terrestrial to great stellar distances the concept of length has changed completely in character. To say that a certain star is 10^5 light years distant is actually and conceptually an entire different kind of thing from saying that a certain goal post is 100 meters distant. Because of our conviction that the character of our experience may change when the range of phenomena changes, we feel the importance of such a question as whether the space of distances of 10^5 light years is Euclidean or not, and are correspondingly dissatisfied that at present there seems no way of giving meaning to it.

We encounter difficulties similar to those above, and are also compelled to modify our procedures, when we go to small distances. Down to the scale of microscopic dimensions a fairly straightforward extension of the ordinary measuring procedure is sufficient, as when we measure a length in a micrometer eyepiece of a microscope. This is of course a combination of tactual and optical measurements, and certain assumptions, justified as far as possible by experience, have to be made about the behaviour of light beams. These assumptions are of a quite different character from those which give us concern on the astronomical scale, because here we meet difficulty from interference effects due to the finite scale of the structure of light, and are not concerned with a possible curvature of light beams in the long reaches of space. Apart from the matter of convenience, we might also measure small distances by the tactual method.

As the dimensions become smaller, certain difficulties become increasingly important that were negligible on a larger scale. In carrying out physically the operations equivalent to our concepts, there are a host of practical precautions to be taken which could be explicitly enumerated with difficulty, but of which nevertheless any practical physicist is conscious. Suppose, for example, we measure length tactually by a combination of Johanssen gauges. In piling these together, we must be sure that they are clean, and are thus in actual contact. Particles of mechanical dirt first engage our attention. Then as we go to smaller dimensions we perhaps have to pay attention to adsorbed films of moisture, then at still smaller dimensions to adsorbed films of gas, until finally we have to work in a vacuum, which must be the more nearly complete the smaller the dimensions. About the time that we discover the necessity for a complete vacuum, we discover that the gauges themselves are atomic in structure, that they have no definite boundaries, and therefore no definite length, but that the length is a hazy thing, varying rapidly in time between certain limits. We treat this situation as best we can by taking a time average of the apparent positions of the boundaries, assuming that along with the decrease of dimensions we have acquired a corresponding extravagant increase in nimbleness. But as the dimensions get smaller continually, the difficulties due to this haziness increase indefinitely in percentage effect, and we are eventually driven to give up altogether. We have made the discovery that there are essential physical limitations to the operations which defined the concept of length. [We perhaps do not regard the substitution of optical for tactual space on the astronomical scale as compelled by the same sort of physical necessity, because I suppose the possible eventual landing of men in the moon will always be one of the dreams of humanity.] At the same time that we have come to the end of our rope with our Johanssen gauge procedure, our companion with the microscope has been encountering difficulties due to the finite wave length of light; this difficulty he has been able to minimise by using light of progressively shorter wave lengths, but he has eventually had to stop on reaching X-rays. Of course this optical procedure with the microscope is more convenient, and is therefore adopted in practice.

Let us now see what is implied in our concept of length extended to ultramicroscopic dimensions. What, for instance, is the meaning of the statement that the distance between the planes of atoms in a certain crystal is 3 x 10^-1cm.? What we would like to mean is that 1/3 x 108 of these planes piled on top of each other give a thickness of 1 cm.; but of course such a meaning is not the actual one. The actual meaning may be found by examining the operations by which we arrived at the number 3 x 10^-8. As a matter of fact, 3 x 10^-8 was the number obtained by solving a general equation derived from the wave theory of light, into which certain numerical data obtained by experiments with X-rays had been substituted. Thus not only has the character of the concept of length changed from tactual to optical, but we have gone much further in committing ourselves to a definite optical theory. If this were the whole story, we would be most uncomfortable with respect to this branch of physics, because we are so uncertain of the correctness of our optical theories, but actually a number of checks can be applied which greatly restore our confidence. For instance, from the density of the crystal and the grating space, the weight of the individual atoms may be computed, and these weights may then be combined with measurements of the dimensions of other sorts of crystal into which the same atoms enter to give values of the densities of these crystals, which may be checked against experiment. All such checks have succeeded within limits of accuracy which are fairly high. It is important to notice that, in spite of the checks, the character of the concept is changing, and begins to involve such things as the equations of optics and the assumption of the conservation of mass.

We are not content, however, to stop with dimensions of atomic order, but have to push on to the electron with a diameter of the order of 10^-12 cm. What is the possible meaning of the statement that the diameter of an electron is 10^-13 cm.? Again the only answer is found by examining the operations by which the number 10^-13 was obtained. This number came by solving certain equations derived from the field equations of electrodynamics, into which certain numerical data obtained by experiment had been substituted. The concept of length has therefore now been so modified as to include that theory of electricity embodied in the field equations, and, most important, assumes the correctness of extending these equations from the dimensions in which they may be verified experimentally into a region in which their correctness is one of the most important and problematical of present-day questions in physics. To find whether the field equations are correct on a small scale, we must verify the relations demanded by the equations between the electric and magnetic forces and the space coördinates, to determine which involves measurement of lengths. But if these space coördinates cannot be given an independent meaning apart from the equations, not only is the attempted verification of the equations impossible, but the question itself is meaningless. If we stick to the concept of length by itself, we are landed in a vicious circle. As a matter of fact, the concept of length disappears as an independent thing, and fuses in a complicated way with other concepts, all of which are themselves altered thereby, with the result that the total number of concepts used in describing nature at this level is reduced in number. A precise analysis of the situation is difficult, and I suppose has never been attempted, but the general character of the situation is evident. Until at least a partial analysis is attempted, I do not see how any meaning can be attached to such questions as whether space is Euclidean in the small scale.

It is interesting to observe that any increased accuracy in knowledge of large scale phenomena must, as far as we now can see, arise from an increase in the accuracy of measurement of small things, that is, in the measurement of small angles or the analysis of minute differences of wave lengths in the spectra. To know the very large takes us into the same field of experiment as to know the very small, so that operationally the large and the small have features in common.

This somewhat detailed analysis of the concept of length brings out features common to all our concepts. If we deal with phenomena outside the domain in which we originally defined our concepts, we may find physical hindrances to performing the operations of the original definition, so that the original operations have to be replaced by others. These new operations are, of course, to be so chosen that they give, within experimental error, the same numerical results in the domain in which the two sets of operations may be both applied; but we must recognise in principle that in changing the operations we have really changed the concept, and that to use the same name for these different concepts over the entire range is dictated only by considerations of convenience, which may sometimes prove to have been purchased at too high a price in terms of unambiguity. We must always be prepared some day to find that an increase in experimental accuracy may show that the two different sets of operations which give the same results in the more ordinary part of the domain of experience, lead to measurably different results in the more unfamiliar parts of the domain. We must remain aware of these joints in our conceptual structure if we hope to render unnecessary the services of the unborn Einsteins.

The second feature common to all concepts brought out by the detailed discussion of length is that, as we approach the experimentally attainable limit, concepts lose their individuality, fuse together, and become fewer in number, as we have seen that at dimensions of the order of the diameter of an electron the concepts of length and the electric field vectors fuse into an amorphous whole. Not only does nature as experienced by us become different in character on its horizons, but it becomes simpler, and therefore our concepts, which are the building stones of our descriptions, become fewer in number. This seems to be an entirely natural state of affairs. How the number of concepts is often kept formally the same as we approach the horizon will be discussed later in special cases.

Links and Citations

Bridgman 1928: The Logic of Modern Physics by P. W. Bridgman, Macmillan, 1928.

## Bridgman, Percy Williams

## Table of Contents

## Biography

Percy Williams Bridgman (1882–1961) was an American physicist who won the 1946 Nobel Prize in Physics for his work on the physics of high pressures. He also wrote extensively on the scientific method and on other aspects of the philosophy of science.His writings on the philosophy of science advocated operationalism, and he coined the term operational definition.

## Importance To Scalometry

Bridgman wrote explicitly about the differences of metrology at different scales. His theory of operational definitions, while criticized, is a mainstream work that is accepted by a scientific consensus.## Excerpts of Relevant Writings by Bridgman

## Detailed Discussion Of The Concept Of Length By Bridgman

We may now gain further familiarity with the operational attitude toward a concept and some of its implications by examining from this point of view the concept of length. Our task is to find the operations by which we measure the length of any concrete physical object. We begin with objects of our commonest experience, such as a house or a house lot. What we do is sufficiently indicated by the following rough description. We start with a measuring rod, lay it on the object so that one of its ends coincides with one end of the object, mark on the object the position of the other end of the rod, then move the rod along in a straight line extension of its previous position until the first end coincides with the previous position of the second end, repeat this process as often as we can, and call the length the total number of times the rod was applied. This procedure, apparently so simple, is in practice exceedingly complicated, and doubtless a full description of all the precautions that must be taken would fill a large treatise. We must, for example, be sure that the temperature of the rod is the standard temperature at which its length is defined, or else we must make a correction for it; or we must correct for the gravitational distortion of the rod if we measure a vertical length; or we must be sure that the rod is not a magnet or is not subject to electrical forces. All these precautions would occur to every physicist. But we must also go further and specify all the details by which the rod is moved from one position to the next on the object‹its precise path through space and its velocity and acceleration in getting from one position to another. Practically of course, precautions such as these are not mentioned, but the justification is in our experience that variations of procedure of this kind are without effect on the final result. But we always have to recognise that all our experience is subject to error, and that at some time in the future we may have to specify more carefully the acceleration, for example, of the rod in moving from one position to another, if experimental accuracy should be so increased as to show a measurable effect. In principle the operations by which length is measured should be uniquely specified. If we have more than one set of operations, we have more than one concept, and strictly there should be a separate name to correspond to each different set of operations.So much for the length of a stationary object, which is complicated enough. Now suppose we have to measure a moving street car. The simplest, and what we may call the "naive" procedure, is to board the car with our meter stick and repeat the operations we would apply to a stationary body. Notice that this procedure reduces to that already adopted in the limiting case when the velocity of the street car vanishes. But here there may be new questions of detail. How shall we jump on to the car with our stick in hand? Shall we run and jump on from behind, or shall we let it pick us up from in front? Or perhaps does now the material of which the stick is composed make a difference, although previously it did not? All these questions must be answered by experiment. We believe from present evidence that it makes no difference how we jump on to the car, or of what material the rod is made, and that the length of the car found in this way will be the same as if it were at rest. But the experiments are more difficult, and we are not so sure of our conclusions as before. Now there are very obvious limitations to the procedure just given. If the street car is going too fast, we can not board it directly, but must use devices, such as getting on from a moving automobile; and, more important still, there are limitations to the velocity that can be given to street cars or to meter sticks by any practical means in our control, so that the moving bodies which can be measured in this way are restricted to a low range of velocity. If we want to be able to measure the length of bodies moving with higher velocities such as we find existing in nature (stars or cathode particles), we must adopt another definition and other operations for measuring length, which also reduce to the operations already adopted in the static case. This is precisely what Einstein did. Since Einstein's operations were different from our operations above, his "length" does not mean the same as our "length." We must accordingly be prepared to find that the length of a moving body measured by the procedure of Einstein is not the same as that above; this of course is the fact, and the transformation formulas of relativity give the precise connection between the two lengths.

Einstein's procedure for measuring the length of bodies in motion was dictated not only by the consideration that it must be applicable to bodies with high velocities, but also by mathematical convenience, in that Einstein describes the world mathematically by a system of coördinate geometry, and the "length" of an object is connected simply with quantities in the analytic equations.

It is of interest to describe briefly Einstein's actual operations for measuring the length of a body in motion; it will show how operations which may be simple from a mathematical point of view may appear complicated from a physical viewpoint. The observer who is to measure the length of a moving object must first extend over his entire plane of reference (for simplicity the problem is considered two-dimensional) a system of time coördinates,i.e., at each point of his plane of reference there must be a clock, and all these clocks must be synchronised. At each clock an observer must be situated. Now to find the length of the moving object at a specified instant of time (it is a subject for later investigation to find whether its length is a function of time), the two observers who happen to coincide in position with the two ends of the object at the specified time on their clocks are required to find the distance between their two positions by the procedure for measuring the length of a stationary object, and this distance is by definition the length of the moving object in the given reference system. This procedure for measuring the length of a body in motion hence involves the idea of simultaneity, through the simultaneous position of the two ends of the rod, and we have seen that the operations by which simultaneity are determined are relative, changing when the motion of the system changes. We hence are prepared to find a change in the length of a body when the velocity of the measuring system changes, and this in fact is what happens. The precise numerical dependence is worked out by Einstein, and involves other considerations, in which we are not interested at present.

The two sorts of length, the naive one and that of Einstein, have certain features in common. In either case in the limit, as the velocity of the measuring system approaches zero, the operations approach those for measuring the length of a stationary object. This, of course, is a requirement in any good definition, imposed by considerations of convenience, and it is too obvious a matter to need elaboration. Another feature is that the operations equivalent to either concept both involve the motion of the system, so that we must recognise the possibility that the length of a moving object may be a function of its velocity. It is a matter of experiment, unpredictable until tried, that within the limits of present experimental error the naive length is not affected by motion, and Einstein's length is.

So far, we have extended the concept of length in only one way beyond the range of ordinary experience, namely to high velocities. The extension may obviously be made in other directions. Let us inquire what are the operations by which we measure the length of a very large object. In practice we probably first meet the desirability of a change of procedure in measuring large pieces of land. Here our procedure depends on measurements with a surveyor's theodolite. This involves extending over the surface of the land a system of coördinates, starting from a base line measured with a tape in the conventional way, sighting on distant points from the extremities of the line, and measuring the angles. Now in this extension we have made one very essential change: the angles between the lines connecting distant points are now angles between beams of light. We assume that a beam of light travels in a straight line. Furthermore, we assume in extending our system of triangulation over the surface of the earth that the geometry of light beams is Euclidean. We do the best we can to check the assumptions, but at most can never get more than a partial check. Thus Gauss checked whether the angles of a large terrestrial triangle add to two right angles and found agreement within experimental error. We now know from the experiments of Michelson that if his measurements had been accurate enough he would not have got a check, but would have had an excess or defect according to the direction in which the beam of light travelled around the triangle with respect to the rotation of the earth. But if the geometry of light beams is Euclidean, then not only must the angles of a triangle add to two right angles, but there are definite relations between the lengths of the sides and the angles, and to check these relations the sides should be measured by the old procedure with a meter stick. Such a check on a large scale has never been attempted, and is not feasible. It seems, then, that our checks on the Euclidean character of optical space are all of restricted character. We have apparently proved that up to a certain scale of magnitude optical space is Euclidean with respect to measures of angle, but this may not necessarily involve that space is also Euclidean with respect to measures of length, so that space need not be completely Euclidean. There is a further most important restriction in that our studies of non-Euclidean geometry have shown that the percentage excess of the angles of a non-Euclidean triangle over 180° may depend on the magnitude of the triangle, so that it may well be that we have not detected the non-Euclidean character of space simply because our measurements have not been on a large enough scale.

We thus see that the concept of length has undergone a very essential change of character even within the range of terrestrial measurements, in that we have substituted for what I may call the tactual concept an optical concept, complicated by an assumption about the nature of our geometry. From a very direct concept we have come to a very indirect concept with a most complicated set of operations. Strictly speaking, length when measured in this way by light beams should be called by another name, since the operations are different. The practical justification for retaining the same name is that within our present experimental limits a numerical difference between the results of the two sorts of operations has not been detected.

We are still worse off when we make the extension to solar and stellar distances. Here space is entirely optical in character, and we never have an opportunity of even partially comparing tactual with optical space. No direct measures of length have ever been made, nor can we even measure the three angles of a triangle and so check our assumption that the use of Euclidean geometry in extending the concept of space is justified. We never have under observation more than two angles of a triangle, as when we measure the distance of the moon by observation from the two ends of the earth's diameter. To extend to still greater distance our measures of length, we have to make still further assumptions, such as that inferences from the Newtonian laws of mechanics are valid. The accuracy of our inferences about lengths from such measurements is not high. Astronomy is usually regarded as a science of extraordinarily high accuracy, but its accuracy is very restricted in character, namely to the measurement of angles. It is probably safe to say that no astronomical distance, except perhaps that of the moon, is known with an accuracy greater than 0.19. When we push our estimates to distances beyond the confines of the solar system in which we are assisted by the laws of mechanics, we are reduced in the first place to measurements of parallax, which at best have a quite inferior accuracy, and which furthermore fail entirely outside a rather restricted range. For greater stellar distances we are driven to other and much rougher estimates, resting for instance on the extension to great distances of connections found within the range of parallax between brightness and spectral type of a star, or on such assumptions as that, because a group of stars looks as if it were all together in space and had a common origin, it actually is so. Thus at greater and greater distances not only does experimental accuracy become less, but the very nature of the operations by which length is to be determined becomes indefinite, so that the distances of the most remote stellar objects as estimated by different observers or by different methods may be very divergent. A particular consequence of the inaccuracy of the astronomical measures of great distances is that the question of whether large scale space is Euclidean or not is merely academic.

We thus see that in the extension from terrestrial to great stellar distances the concept of length has changed completely in character. To say that a certain star is 10^5 light years distant is actually and conceptually an entire different kind of thing from saying that a certain goal post is 100 meters distant. Because of our conviction that the character of our experience may change when the range of phenomena changes, we feel the importance of such a question as whether the space of distances of 10^5 light years is Euclidean or not, and are correspondingly dissatisfied that at present there seems no way of giving meaning to it.

We encounter difficulties similar to those above, and are also compelled to modify our procedures, when we go to small distances. Down to the scale of microscopic dimensions a fairly straightforward extension of the ordinary measuring procedure is sufficient, as when we measure a length in a micrometer eyepiece of a microscope. This is of course a combination of tactual and optical measurements, and certain assumptions, justified as far as possible by experience, have to be made about the behaviour of light beams. These assumptions are of a quite different character from those which give us concern on the astronomical scale, because here we meet difficulty from interference effects due to the finite scale of the structure of light, and are not concerned with a possible curvature of light beams in the long reaches of space. Apart from the matter of convenience, we might also measure small distances by the tactual method.

As the dimensions become smaller, certain difficulties become increasingly important that were negligible on a larger scale. In carrying out physically the operations equivalent to our concepts, there are a host of practical precautions to be taken which could be explicitly enumerated with difficulty, but of which nevertheless any practical physicist is conscious. Suppose, for example, we measure length tactually by a combination of Johanssen gauges. In piling these together, we must be sure that they are clean, and are thus in actual contact. Particles of mechanical dirt first engage our attention. Then as we go to smaller dimensions we perhaps have to pay attention to adsorbed films of moisture, then at still smaller dimensions to adsorbed films of gas, until finally we have to work in a vacuum, which must be the more nearly complete the smaller the dimensions. About the time that we discover the necessity for a complete vacuum, we discover that the gauges themselves are atomic in structure, that they have no definite boundaries, and therefore no definite length, but that the length is a hazy thing, varying rapidly in time between certain limits. We treat this situation as best we can by taking a time average of the apparent positions of the boundaries, assuming that along with the decrease of dimensions we have acquired a corresponding extravagant increase in nimbleness. But as the dimensions get smaller continually, the difficulties due to this haziness increase indefinitely in percentage effect, and we are eventually driven to give up altogether. We have made the discovery that there are essential physical limitations to the operations which defined the concept of length. [We perhaps do not regard the substitution of optical for tactual space on the astronomical scale as compelled by the same sort of physical necessity, because I suppose the possible eventual landing of men in the moon will always be one of the dreams of humanity.] At the same time that we have come to the end of our rope with our Johanssen gauge procedure, our companion with the microscope has been encountering difficulties due to the finite wave length of light; this difficulty he has been able to minimise by using light of progressively shorter wave lengths, but he has eventually had to stop on reaching X-rays. Of course this optical procedure with the microscope is more convenient, and is therefore adopted in practice.

Let us now see what is implied in our concept of length extended to ultramicroscopic dimensions. What, for instance, is the meaning of the statement that the distance between the planes of atoms in a certain crystal is 3 x 10^-1cm.? What we would like to mean is that 1/3 x 108 of these planes piled on top of each other give a thickness of 1 cm.; but of course such a meaning is not the actual one. The actual meaning may be found by examining the operations by which we arrived at the number 3 x 10^-8. As a matter of fact, 3 x 10^-8 was the number obtained by solving a general equation derived from the wave theory of light, into which certain numerical data obtained by experiments with X-rays had been substituted. Thus not only has the character of the concept of length changed from tactual to optical, but we have gone much further in committing ourselves to a definite optical theory. If this were the whole story, we would be most uncomfortable with respect to this branch of physics, because we are so uncertain of the correctness of our optical theories, but actually a number of checks can be applied which greatly restore our confidence. For instance, from the density of the crystal and the grating space, the weight of the individual atoms may be computed, and these weights may then be combined with measurements of the dimensions of other sorts of crystal into which the same atoms enter to give values of the densities of these crystals, which may be checked against experiment. All such checks have succeeded within limits of accuracy which are fairly high. It is important to notice that, in spite of the checks, the character of the concept is changing, and begins to involve such things as the equations of optics and the assumption of the conservation of mass.

We are not content, however, to stop with dimensions of atomic order, but have to push on to the electron with a diameter of the order of 10^-12 cm. What is the possible meaning of the statement that the diameter of an electron is 10^-13 cm.? Again the only answer is found by examining the operations by which the number 10^-13 was obtained. This number came by solving certain equations derived from the field equations of electrodynamics, into which certain numerical data obtained by experiment had been substituted. The concept of length has therefore now been so modified as to include that theory of electricity embodied in the field equations, and, most important, assumes the correctness of extending these equations from the dimensions in which they may be verified experimentally into a region in which their correctness is one of the most important and problematical of present-day questions in physics. To find whether the field equations are correct on a small scale, we must verify the relations demanded by the equations between the electric and magnetic forces and the space coördinates, to determine which involves measurement of lengths. But if these space coördinates cannot be given an independent meaning apart from the equations, not only is the attempted verification of the equations impossible, but the question itself is meaningless. If we stick to the concept of length by itself, we are landed in a vicious circle. As a matter of fact, the concept of length disappears as an independent thing, and fuses in a complicated way with other concepts, all of which are themselves altered thereby, with the result that the total number of concepts used in describing nature at this level is reduced in number. A precise analysis of the situation is difficult, and I suppose has never been attempted, but the general character of the situation is evident. Until at least a partial analysis is attempted, I do not see how any meaning can be attached to such questions as whether space is Euclidean in the small scale.

It is interesting to observe that any increased accuracy in knowledge of large scale phenomena must, as far as we now can see, arise from an increase in the accuracy of measurement of small things, that is, in the measurement of small angles or the analysis of minute differences of wave lengths in the spectra. To know the very large takes us into the same field of experiment as to know the very small, so that operationally the large and the small have features in common.

This somewhat detailed analysis of the concept of length brings out features common to all our concepts. If we deal with phenomena outside the domain in which we originally defined our concepts, we may find physical hindrances to performing the operations of the original definition, so that the original operations have to be replaced by others. These new operations are, of course, to be so chosen that they give, within experimental error, the same numerical results in the domain in which the two sets of operations may be both applied; but we must recognise in principle that in changing the operations we have really changed the concept, and that to use the same name for these different concepts over the entire range is dictated only by considerations of convenience, which may sometimes prove to have been purchased at too high a price in terms of unambiguity. We must always be prepared some day to find that an increase in experimental accuracy may show that the two different sets of operations which give the same results in the more ordinary part of the domain of experience, lead to measurably different results in the more unfamiliar parts of the domain. We must remain aware of these joints in our conceptual structure if we hope to render unnecessary the services of the unborn Einsteins.

The second feature common to all concepts brought out by the detailed discussion of length is that, as we approach the experimentally attainable limit, concepts lose their individuality, fuse together, and become fewer in number, as we have seen that at dimensions of the order of the diameter of an electron the concepts of length and the electric field vectors fuse into an amorphous whole. Not only does nature as experienced by us become different in character on its horizons, but it becomes simpler, and therefore our concepts, which are the building stones of our descriptions, become fewer in number. This seems to be an entirely natural state of affairs. How the number of concepts is often kept formally the same as we approach the horizon will be discussed later in special cases.

## Links and Citations

Bridgman 1928: The Logic of Modern Physics by P. W. Bridgman, Macmillan, 1928.

Pages on operational definitions:

Click here to read about other people who are significant to this research: