Table of Contents

Read here about a physical property that can be measured and depicted in a scalometer.


In physics, energy is an indirectly observed quantity understood as the ability a physical system has to do work on other physical systems. Since work is defined as a force acting through a distance (a length of space), energy is always equivalent to the ability to exert pulls or pushes against the basic forces of nature, along a path of a certain length. The total energy contained in an object is identified with its mass, and energy (like mass), cannot be created or destroyed.

Any form of energy may be transformed into another form. For example, all types of potential energy are converted into kinetic energy when the objects are given freedom to move to different position (as for example, when an object falls off a support). When energy is in a form other than thermal energy, it may be transformed with good or even perfect efficiency, to any other type of energy, including electricity or production of new particles of matter. With thermal energy, however, there are often limits to the efficiency of the conversion to other forms of energy, as described by the second law of thermodynamics. In all such energy transformation processes, the total energy remains the same, and a transfer of energy from one system to another, results in a loss to compensate for any gain. This principle, the conservation of energy, was first postulated in the early 19th century, and applies to any isolated system.

Although the total energy of a system does not change with time, its value may depend on the frame of reference. For example, a seated passenger in a moving airplane has zero kinetic energy relative to the airplane, but non-zero kinetic energy (and higher total energy) relative to the Earth.

Units of energy

Energy, like mass, is a scalar physical quantity. In the International System of Units (SI), energy is measured in joules, but in many fields other units, such as kilowatt-hours and kilocalories, are customary. All of these units translate to units of work, which is always defined in terms of forces and the distances that the forces act through.